Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress.

نویسندگان

  • Eric A Ottow
  • Monika Brinker
  • Thomas Teichmann
  • Eberhard Fritz
  • Werner Kaiser
  • Mikael Brosché
  • Jaakko Kangasjärvi
  • Xiangning Jiang
  • Andrea Polle
چکیده

Populus euphratica Olivier is known to exist in saline and arid environments. In this study we investigated the physiological mechanisms enabling this species to cope with stress caused by salinity. Acclimation to increasing Na+ concentrations required adjustments of the osmotic pressure of leaves, which were achieved by accumulation of Na+ and compensatory decreases in calcium and soluble carbohydrates. The counterbalance of Na+/Ca2+ was also observed in mature leaves from field-grown P. euphratica trees exposed to an environmental gradient of increasing salinity. X-ray microanalysis showed that a primary strategy to protect the cytosol against sodium toxicity was apoplastic but not vacuolar salt accumulation. The ability to cope with salinity also included maintenance of cytosolic potassium concentrations and development of leaf succulence due to an increase in cell number and cell volume leading to sodium dilution. Decreases in apoplastic and vacuolar Ca2+ combined with suppression of calcineurin B-like protein transcripts suggest that Na+ adaptation required suppression of calcium-related signaling pathways. Significant increases in galactinol synthase and alternative oxidase after salt shock and salt adaptation point to shifts in carbohydrate metabolism and suppression of reactive oxygen species in mitochondria under salt stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants

Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt t...

متن کامل

اثر تنش خشکی و مقادیر مختلف پتاسیم بر تجمع اسمولیت‌ها و کلروفیل دو گونه کلزا و خردل هندی

In order to assess the effect of drought stress and various levels of potassium on solutes accumulation and chlorophyll of canola and Indian mustard, a field experiment was conducted in a factorial design based on randomized complete block design with three replications including three irrigation regimes (I1=irrigation after 50% depletion of soil water(control),I2 =irrigation after 70% water de...

متن کامل

In vitro Response of Asparagus breslerianus to NaCl

Asparagus breslerianus a wild species in Iran, exhibited tolerance to salt in dry gypsum hills and dry lands. In order to check for salt tolerance thresholdvia in vitro conditions, the A. breslerianus callus was subjected to NaCl (sodium chloride) treatments. Six weeks old calli derived from male spear bud, were exposed to 0, 21.88, 43.76, 65.64, 76.58, 87.52, 109.40, 131.28, 153.16 and 175.04 ...

متن کامل

Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application

Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...

متن کامل

Tissue-Specific Transcriptome Analysis Reveals Multiple Responses to Salt Stress in Populus euphratica Seedlings

Salt stress is one of the most crucial factors impacting plant growth, development and reproduction. However, information regarding differences in tissue-specific gene expression patterns, which may improve a plant's tolerance to salt stress, is limited. Here, we investigated the gene expression patterns in tissues of Populus euphratica Oliv. seedlings using RNA sequencing (RNA-Seq) technology....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 4  شماره 

صفحات  -

تاریخ انتشار 2005